翻訳と辞書
Words near each other
・ Geneva Declaration on the Future of the World Intellectual Property Organization
・ Geneva Downtown Commercial Historic District
・ Genetic Savings & Clone
・ Genetic screen
・ Genetic sequencing
・ Genetic sexual attraction
・ Genetic stock center
・ Genetic structure
・ Genetic Studies of Genius
・ Genetic studies of Jewish origins
・ Genetic studies on Arabs
・ Genetic studies on Serbs
・ Genetic studies on Sinhalese
・ Genetic studies on Sri Lankan Tamils
・ Genetic Studios
Genetic testing
・ Genetic Testing Laboratories
・ Genetic use restriction technology
・ Genetic variability
・ Genetic variance
・ Genetic variant
・ Genetic variation
・ Genetic variation (disambiguation)
・ Genetic viability
・ Genetic Walk
・ Genetic World
・ Genetica
・ Genetically modified bacteria
・ Genetically modified bird
・ Genetically modified canola


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Genetic testing : ウィキペディア英語版
Genetic testing

Genetic testing, also known as DNA testing, allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's parentage (genetic mother and father) or in general a person's ancestry or biological relationship between people. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders.
Genetic testing identifies changes in chromosomes, genes, or proteins. The variety of genetic tests has expanded throughout the years. In the past, the main genetic tests searched for abnormal chromosome numbers and mutations that lead to rare, inherited disorders. Today, tests involve analyzing multiple genes to determine the risk of developing certain more common diseases such as heart disease and cancer. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use, and more are being developed.〔(【引用サイトリンク】title=Genetic Testing: MedlinePlus )
Because genetic mutations can directly affect the structure of the proteins they code for, testing for specific genetic diseases can also be accomplished by looking at those proteins or their metabolites, or looking at stained or fluorescent chromosomes under a microscope.〔Human Genome Project Information. (Gene Testing )〕
This article focuses on genetic testing for medical purposes. DNA sequencing, which actually produces a sequences of As, Cs, Gs, and Ts, is used in molecular biology, evolutionary biology, metagenomics, epidemiology, ecology, and microbiome research.
==Types==
Genetic testing is "the analysis of chromosomes (DNA), proteins, and certain metabolites in order to detect heritable disease-related genotypes, mutations, phenotypes, or karyotypes for clinical purposes." It can provide information about a person's genes and chromosomes throughout life. Available types of testing include:
* Newborn screening: Newborn screening is used just after birth to identify genetic disorders that can be treated early in life. A blood sample is collected with a heel prick from the newborn 24–48 hours after birth and sent to the lab for analysis. Newborn screening varies state by state, but all states by law test for at least 21 disorders. If abnormal results are obtained, it does not necessarily mean the child has the disorder. Diagnostic tests must follow the initial screening to confirm the disease. The routine testing of infants for certain disorders is the most widespread use of genetic testing—millions of babies are tested each year in the United States. All states currently test infants for phenylketonuria (a genetic disorder that causes mental illness if left untreated) and congenital hypothyroidism (a disorder of the thyroid gland). People with PKU do not have an enzyme needed to process the amino acid phenylalanine, which is responsible for normal growth in kids and normal protein use throughout their lifetime. If there is a buildup of too much phenylalanine, brain tissue can be damaged, causing developmental delay. Newborn screening can detect the presence of PKU, allowing kids to get put on a special diet right away to avoid the effects of the disorder.〔
* Diagnostic testing: Diagnostic testing is used to diagnose or rule out a specific genetic or chromosomal condition. In many cases, genetic testing is used to confirm a diagnosis when a particular condition is suspected based on physical mutations and symptoms. Diagnostic testing can be performed at any time during a person's life, but is not available for all genes or all genetic conditions. The results of a diagnostic test can influence a person's choices about health care and the management of the disease. For example, people with a family history of polycystic kidney disease (PKD) who experience pain or tenderness in their abdomen, blood in their urine, frequent urination, pain in the sides, a urinary tract infection or kidney stones may decide to have their genes tested and the result could confirm the diagnosis of PKD.
* Carrier testing: Carrier testing is used to identify people who carry one copy of a gene mutation that, when present in two copies, causes a genetic disorder. This type of testing is offered to individuals who have a family history of a genetic disorder and to people in ethnic groups with an increased risk of specific genetic conditions. If both parents are tested, the test can provide information about a couple's risk of having a child with a genetic condition like cystic fibrosis.
* Preimplantation genetic diagnosis: Genetic testing procedures that are performed on human embryos prior to the implantation as part of an in vitro fertilization procedure. Pre-implantation testing is used when individuals try to conceive a child through in vitro fertilization. Eggs from the woman and sperm from the man are removed and fertilized outside the body to create multiple embryos. The embryos are individually screened for abnormalities, and the ones without abnormalities are implanted in the uterus.
* Prenatal diagnosis: Used to detect changes in a fetus's genes or chromosomes before birth. This type of testing is offered to couples with an increased risk of having a baby with a genetic or chromosomal disorder. In some cases, prenatal testing can lessen a couple's uncertainty or help them decide whether to abort the pregnancy. It cannot identify all possible inherited disorders and birth defects, however. One method of performing a prenatal genetic test involves an amniocentesis, which removes a sample of fluid from the mother’s amniotic sac 15 to 20 or more weeks into pregnancy. The fluid is then tested for chromosomal abnormalities such as Down syndrome (Trisomy 21) and Trisomy 18, which can result in neonatal or fetal death. Test results can be retrieved within 7–14 days after the test is done. This method is 99.4% accurate at detecting and diagnosing fetal chromosome abnormalities. Although there is a risk of miscarriage associated with an amniocentesis, the miscarriage rate is only 1/400. Another method of prenatal testing is Chorionic Villus Sampling (CVS). Chorionic villi are projections from the placenta that carry the same genetic makeup as the baby. During this method of prenatal testing, a sample of chorionic villi is removed from the placenta to be tested. This test is performed 10–13 weeks into pregnancy and results are ready 7–14 days after the test was done. Another test using blood taken from the fetal umbilical cord is percutaneous umbilical cord blood sampling.
* Predictive and presymptomatic testing: Predictive and presymptomatic types of testing are used to detect gene mutations associated with disorders that appear after birth, often later in life. These tests can be helpful to people who have a family member with a genetic disorder, but who have no features of the disorder themselves at the time of testing. Predictive testing can identify mutations that increase a person's chances of developing disorders with a genetic basis, such as certain types of cancer. For example, an individual with a mutation in ''BRCA1'' has a 65% cumulative risk of breast cancer.〔(Average risks of breast and ovarian cancer as... )〕 Hereditary breast cancer along with ovarian cancer syndrome are caused by gene alterations in the genes BRCA1 and BRCA2. Major cancer types related to mutations in these genes are female breast cancer, ovarian, prostate, pancreatic, and male breast cancer.〔(【引用サイトリンク】website=National Cancer Institute )〕 Li-Fraumeni syndrome is caused by a gene alteration on the gene TP53. Cancer types associated with a mutation on this gene include breast cancer, soft tissue sarcoma, osteosarcoma (bone cancer), leukemia and brain tumors. In the Cowden syndrome there is a mutation on the PTEN gene, causing potential breast, thyroid or endometrial cancer.〔 Presymptomatic testing can determine whether a person will develop a genetic disorder, such as hemochromatosis (an iron overload disorder), before any signs or symptoms appear. The results of predictive and presymptomatic testing can provide information about a person’s risk of developing a specific disorder, help with making decisions about medical care and provide a better prognosis.
*Pharmacogenomics: type of genetic testing that determines the influence of genetic variation on drug response. When a person has a disease or health condition, pharmacogenomics can examine an individual’s genetic makeup to determine what medicine and what dosage would be the safest and most beneficial to the patient. In the human population, there are approximately 11 million single nucleotide polymorphisms (SNPs) in people’s genomes, making them the most common variations in the human genome. SNPs reveal information about an individual’s response to certain drugs. This type of genetic testing can be used for cancer patients undergoing chemotherapy.〔(【引用サイトリンク】url=http://www.ama-assn.org/ama/pub/physician-resources/medical-science/genetics-molecular-medicine/related-policy-topics/genetic-testing.page? )〕 A sample of the cancer tissue can be sent in for genetic analysis by a specialized lab. After analysis, information retrieved can identify mutations in the tumor which can be used to determine the best treatment option.〔(【引用サイトリンク】website=Cancer Treatment Centers for America )
Non-diagnostic testing includes:
* Forensic testing: Forensic testing uses DNA sequences to identify an individual for legal purposes. Unlike the tests described above, forensic testing is not used to detect gene mutations associated with disease. This type of testing can identify crime or catastrophe victims, rule out or implicate a crime suspect, or establish biological relationships between people (for example, paternity).
* Paternity testing: This type of genetic test uses special DNA markers to identify the same or similar inheritance patterns between related individuals. Based on the fact that we all inherit half of our DNA from the father, and half from the mother, DNA scientists test individuals to find the match of DNA sequences at some highly differential markers to draw the conclusion of relatedness.
* Genealogical DNA test: To determine ancestry or ethnic heritage for genetic genealogy
* Research testing: Research testing includes finding unknown genes, learning how genes work and advancing our understanding of genetic conditions. The results of testing done as part of a research study are usually not available to patients or their healthcare providers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Genetic testing」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.